Note: The references are not ordered alphabetically!
1800 
P. Erdos Some combinatorial, geometric and set theoretic problems in measure theory in Kölzow, D.; MaharamStone, D. (eds.), Measure Theory Oberwolfach, Lecture Notes in Mathematics 1089 (1983) 
1801 
T. Calamoneri, B. Sinaimeri Relating threshold tolerance graphs to other graph classes In Proc. of the 15th Italian Conference on Theoretical Computer Science ICTCS (2014) Available here. 
1802 
P.A. Golovach, P. Heggernes, N. Lindzey, R.M. McConnell, V. Fernandes dos Santos, J.P. Sprinrad, J.L. Szwarcfiter On recognition of threshold tolerance graphs and their complements Discrete Appl. Math. 216 No. 171180 (2017) doi 10.1016/j.dam.2015.01.034 
1803 
V. Dujmovic, A. Por, D.R. Wood Track layouts of graphs DMTCS 6 No.2 497522 (2004) 
1804 
M.D. Safe Characterization and lineartime detection of minimal obstructions to concaveround graphs and the circularones property J. Graph. Th. 93 No.2 268298 (2020) 
1805 
V. Lozin, V. Zamaraev The structure and the number of $P_7$free bipartite graphs European J. Combin 65 142153 (2017) doi 10.1016/j.ejc.2017.05.008 
1806 
M. Jiang Recognizing dinterval graphs and dtrack interval graphs Algorithmica 66 541563 (2012) doi 10.1007/s0045301296515 
1807 
B.M.P. Jansen, V. Raman, M. Vatshelle Parameter ecology for feedback vertex set Tsinghua science and technology 19 No.4 387409 (2014) 
1808 

1809 
F. Maffray Fast recognition of doubled graphs Theoretical Comp.Sci. 516 96100 (2014 doi 10.1016/j.tcs.2013.11.020 
1810 
A. Munaro On line graphs of subcubic trianglefree graphs Discrete Math. 340 No.6 12101226 (2017) doi 10.1016/j.disc.2017.01.006 
1811 
A. Munaro Bounded clique cover of some sparse graphs Discrete Math. 340 No.9 22082216 (2017) doi 10.1016/j.disc.2017.04.004 
1812 
Z. Deniz, E. Galby, A. Munaro, B. Ries On contact graphs of paths on a grid Proc. of Graph Drawing 2018, LNCS 11282 317330 (2018) 
1813 
E. Gioan, Ch. Paul, M. Tedder5, D. Corneil Practical and Efficient Circle Graph Recognition Algoritmica 69 No.4 759788 (2014) 
1814 
S. Chaplick Intersection graphs of noncrossing paths Proceedings of the International Workshop on GraphTheoretic Concepts in Computer Science WG 2019, LNCS 11789 (2019) doi 10.1007/9783030307868_24 Available on arXiv. 
1815 
R. Adhikary, K. Bose, S. Mukherjee, B. Roy Complexity of maximum cut on interval graphs Proc. of 37th International Symposium on Computation Geometry 7:17:11 (2021) 
1816 
O. Cagirici, P. Hlineny, B. Roy On colourability of polygon visibility graphs 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science 21:121:14 (2018) 
1817  Let $k$ be the size of a maximum independent set in $G$. For every set $S$ in $V(G)$ with $k$ vertices, we can check in linear time whether $G[S]$ is independent and $G\S$ is $P_3$free. This gives an $O(V(G)^k)$ algorithm to decide whether $G$ is monopolar. (P. Ochem) 
1818 
O. Aichholzer, W. Mulzer, P. Schnider, B. Vogtenhuber NPCompleteness of MaxCut for Segment Intersection Graphs In: 34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018 Available here. 
1819 
J.E. Williamson On Hamiltonconnected graphs Ph.D.Thesis, Western Michigan University 1973 
1820 
O. Ore Hamilton connected graphs Journal de Mathematiques Pures et Appliquees XLII 2127 (1963) 
1821 
P. Seymour How the proof of the Strong Perfect Graph Conjecture was found 2006 Available here 
1822 
W. Kennedy, G. Lin, G. Yan Strictly chordal graphs are leaf powers J. of Discrete Algorithms 4 no.4 511525 (2006) doi 10.1016/j.jda.2005.06.005 
1823 
M.C. Golumbic, U.N. Peled Block duplicate graphs and a hierarchy of chordal graphs Discrete Appl. Math. 124 No.13 6771 (2002) doi 10.1016/S0166218X(01)003304 
1824 
G. Oriolo, U. pietropaoli, G. Stauffer On the recognition of fuzzy circular interval graphs Discrete Math. 312 No.8 14261435 (2012) doi 10.1016/j.disc.2011.12.029 
1825 
W. Kennedy Strictly chordal graphs and phylogenetic roots M.Sc.Thesis, University of Alberta (2005) 
1826 
A. Rafiey Recognizing interval bigraphs by forbidden patterns J. Graph Theory (2022) doi 10.1002/jgt.22792 
1827  A graph can contain arbitrarily many diamonds and therefore has unbounded distance to block (P. Ochem). 
1828 
A graph $G$ satisfies the condition of Prop. 1 in
[1456]
with $\tilde{G}$ a star (P. Ochem).
J. Kratochvil, A. Kubena
On intersection representations of coplanar graphs Discrete Math. 178 No.13 251255 (1998) 
1829  A graph with maximum independent set bounded by $k$ that is 3colourable has at most $3k$ vertices. (P. Ochem) 
1830 
Book thickness of an is at most 5: 4 pages for the graph
[1777]
and an extra page for the apex vertex. (P. Ochem)
M. Yannakakis
Embedding planar graph in four pages Journal of Computer and System Sciences 38 3667 (1989) 
1831 
R. Belmonte, P. van 't Hof, M. Kaminski, D. Paulusma, D.M. Thilikos Characterizing graphs of small carvingwidth Discrete Appl. Math 161 No.1314 18881893 (2013) doi 10.1016/j.dam.2013.02.036 
1832 
M. Barbato, D. Bezzi Monopolar graphs: Complexity of computing classical graph parameters Discrete Appl. Math. 291 277285 (2021) doi 10.1016/j.dam.2020.12.023 
1833 
M. Chudnovsky, A. Scott, P. Seymour, S. Spirki Detecting an odd hole J. ACM 67 No.1 112 (2020) doi 10.1145/3375720 
1834 
Z. Füredi, F. Lazebnik, A. Seress, V.A. Ustimenko, A.J. Woldar Graphs of prescribed girth and bidegree J. Combin. Th. Series B 64 No.2 228239 (1995) doi 10.1006/jctb.1995.1033 
1835 
L.E. Trotter Line perfect graphs Mathematical Programming 12 No.2 255259 (1977) doi 10.1007/BF01593791 
1836 
I.E. Zverovich Perfect cochromatic graphs Rutcor Research Report 162000 
1837 
G. Burosch, J.M. Laborde Characterization of grid graphs Discrete Math. 87 No.1 8588 (1991) doi 10.1016/0012365X(91)90074C 
1838 
M.R. Cerioli, L. Faria, T.O. Ferreira, C.A.J. Martinhon, F. Protti, B. Reed Partition into cliques for cubic graphs: Planar case, complexity and approximation Discrete Appl. Math. 156 No.12 22702278 (2008) doi 10.1016/j.dam.2007.10.015 
1839 
A. Grzesik, T. Klimosova, M. Pilipczuk Polynomialtime Algorithm for Maximum Weight Independent Set on P6free Graphs ACM Transactions on Algorithms 18 No.1 157 (2022) doi 10.1145/3414473 
1840 
O. Alsaadi, J. Radcliffe Asteroidal sets and dominating paths In: Wu, W., Guo, J. (eds) Combinatorial Optimization and Applications. COCOA 2023. LNCS 14461 doi 10.1007/9783031496110_15 
1841 
P. Bachmann, I. Rutter, P. Stumpf On 3coloring circle graphs doi 10.48550/arXiv.2309.02258 Available on arXiv 
1842 
B.S. Panda The forbidden subgraph characterization of directed vertex graphs Discrete Math. 196 No.13 239256 (1999) doi 10.1016/S0012365X(98)001277 
1843 
A. Brandstaedt, C. Hundt, F. Mancini, P. Wagner Rooted directed path graphs are leaf powers Discrete Math. 310 No.4 987910 doi 10.1016/j.disc.2009.10.006 
1844  For any linear layout of the vertices of a graph, an endpoint $x$ in the Layout and an integer $b$, there can be at most $(b1)^2$ edges of length $b$ crossing x. Hence cutwidth <= bandwidth$^2$. (M. Renken) 